An lllustration of Kolchin's Proof of [Kolchin 1973, Prop. 10, page
200]
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from sympy import *
from DifferentialAlgebra import *
init printing ()

x = var ('x")
y3, y2, yl, rho, alpha, phi, ¢ = function ('y3, y2, yl, rho, alpha, phi, c'")

R = DifferentialRing (derivations = [x], blocks = [c, y3, y2, yl, rho, alpha, phi])

The base field F contains some phi which is not a constant

phi defining equation = Derivative(phi(x),x,x) - 1
phi defining equation

d2
wﬁﬁ(w) -1

The characteristic set A of the prime ideal p0 of F[y1,y2,y3]

A = (y3(x) = y2(x))**2 - Derivative(phi(x),x)*yl(x)**3
A
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H A = R.separant (A)

H A
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alpha is differentially algebraic over F and permits to build a zero Alpha = (0, alpha, alpha) of A (G = F)

A singular zero is chosen (it annihilates H_A)

alpha defining equation = Derivative(alpha(x),x)**2 - phi(x)*alpha(x)
alpha defining equation
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Alpha = { y1(x):0, y2(x):alpha(x), y3(x):alpha(x) }
Alpha

{y1(2): 0, y2(2) : a(z), y3(z): a(z)}
R.evaluate (A, Alpha)

0

R.evaluate (H A, Alpha)

0
Beta is a (rational parametrization of a) Puiseux series in ¢

1. centered at Alpha (Beta(0) = Alpha)

2. it annihilates A

3. it does not annihilate H_A

4. requires a (differential) algebraic extension (rho) of G = F (L = G)



rho _defining equation = rho(x)**2 - Derivative(phi(x),x)
rho defining equation

P(z) — - g(a)

Beta = { yl(x):c(x)**2, y2(x):alpha(x), y3(x):alpha(x) + rho(x)*c(x)**3 }
Beta

{71 (2) : (@), y2(2) s a(2), y3(2): a(z) + *(z)p(x)}

R.evaluate (A, Beta)

d
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rem (R.evaluate (A, Beta), rho defining equation, rho(x))

0

R.evaluate (H A, Beta)

26%(2)p()

The last steps of the proof. Pick a differential polynomial f in [A]:H_AMinfty

Then f(Beta) is differential power series in L{{c}} which must be zero

f = Derivative(A,x,x) + yl(x)*Derivative(A,x)
f
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series = R.evaluate (f.doit(), Beta).doit ()



koeffs, terms = R.coeffs(series, c(x))

terms

[é(@%c(m), c‘*(m)(%c(w)) (@) elw), o) ele), Ha), Ha)

koeffs

[6/}2(;75) ~ 6-14(2), 306%(2) — 30—-9(), 66°(2) — 6 (z), 2p(e) - p(e) ~ 12— 0(x), 20(0) - p(a) — -5 H(z), 2p(z)

Computing in L or in L{{c}} amounts to taking normal forms of expressions modulo the characteristic set C defining our successive field
extensions

C = RegularDifferentialChain ([rho defining equation,
alpha defining equation, phi defining equation], R)
C.equations(solved=True)

[ L o@) =1, (%a(m)) = a(@)é(e), P(z) = - 4(z)

C.normal form (koeffs)
[0, 0, 0, 0, 0, O]

Last, "“a diagram commutes" but | have not found any convincing way to illustrate this subtle step by a computation



